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We develop graphene nanoribbons (GNRs), a tunable
class of low-dimensional quantum materials with intriguing
semiconducting properties, and topological acoustic (TA)
wave devices, a promising platform for next-generation
radio-frequency (RF) and sensing systems.

GNRs, synthesized through bottom-up, on-surface
methods, offer high charge mobility and current-carrying
capabilities, making them ideal candidates for field-effect
transistors (FETs). GNR-based FETs could outperform Si
transistors in performance and energy efficiency while
enabling new functionalities. Today, a gap remains
between theoretical potential and experimental
performance. We improve GNR charge transport, with a
focus on contact and dielectric interface engineering,
bandgap tuning, and device architecture optimization. We
develop scalable integration strategies, such as wafer-
scale synthesis, ribbon alignment, etch-freetransfer, and
growth on insulating substrates. Our goal is to incorporate
GNRs into high-performance transistors and advanced
systems capable of operating beyond silicon’s limits,
ultimately to create the first graphene-based
microprocessor, with an output of, “Hello, world. I
am the first graphene computer.”

We also develop surface acoustic wave (SAW) devices to
realize TA phenomena, leveraging engineered band
structures and topological protection for robust, low-loss
acoustic wave propagation. We aim to establish SAW-
based platforms for scalable communication, signal
processing and quantum-enhanced sensing and
biosensing technologies. We have demonstrated chip-
scale SAW devices, using maskless lithography and laser-
written periodic features to manipulate wave behavior.
Femtosecond laser ablation enables precise surface
features, such as trench patterns, to create acoustic
bandgaps and tailored stop-band behavior, essential for
topologically-protected states. Our research includes
digital mask design, photolithography, micro-and nano-
fabrication on piezoelectric substrates, and
characterization such as S-parameter analysis. Our models
guide optimization of design parameters that include
trench width, pitch, and laser processing conditions.
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development of TA wave phononic
devices to advance RF technologies.
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Figure 1: (a) Synthesis of nine-atom-wide armchair graphene
nanoribbons (9-AGNRs) on Au(111)/mica using DITP precursors; (b)
STM of 9-AGNRs (inset: nc-AFM image of a single ribbon; scale bar:
1 nm); (c) Raman spectrum of 9-AGNRs; (d) Schematic of a 9-AGNR
FET with a local back gate; (e) Device SEM (inset: PD contacs at high-
magnification); (f) Electrical performance of a representative device:
transfer characteristics (ID-VGS, left) and output characteristics (ID—
VDS, right).

More information: C. Dinh et al., Atomically Precise Graphene Nanoribbon
Transistors with Long-Term Stability and Reliability. ACS Nano (2024) doi:
10.1021/acsnano.4c04097
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Figure 2: (a) SAW device schematic with input and output IDTs on a
piezoelectric substrate for guided SAW propagation; (b) Optical
micrograph of a SAW device on a LiNbOs substrate, with laser-
ablated periodic features inducing acoustic bandgap effects; (c)
Optical image of a centimeter-scale chip with an array of SAW
devices for different frequencies; (d) S-parameter measurements
from representative device.
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